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ABSTRACT 

Recent work has shown that the damage resistance of both ICF-class (1600 cm’) DKDP tripler crystals and Si02 
components (lenses, gratings and debris shields) benefits from laser raster scanning using pulsed lasers in the 350 nm 
range. For laser raster scanning to be a viable optical improvement tool for these large optics, damage improvement 
must be optimized while maintaining scan times of less than 8 hoursloptic. In this paper we examine raster scanning 
with small beams from tabletop laser systems. We show that 120 Watts of average power is required for a tabletop 
scanning system at one optidday. Next, we develop equations for total scan time for square and round top hat beams 
and round and rectangular gaussian beams. We also consider the effect of packing geometry (square vs. hexagonal), 
examine the deviations from uniform coverage with each scan geometry and show that hexagonal packing yields lower 
scan times but is less efficient in coverage than square geometry. We also show that multiple passes at low packing 
densities are temporally equivalent to a single pass with higher packing density, and discuss the advantages of each 
method. In addition, we show that the differences between hexagonal and square scan geometries are negated when 
pointing errors and fluence fluctuations from the laser are considered. 

1. INTRODUCTION 

Past experience has shown that the damage resistance of virtually all optical components found in Inertial Confinement 
Fusion (ICF) lasers benefits from low fluence laser exposures (conditioning) at their use wavelength. 

Conditioning is a generic term that means different things for different optical materials. For a coated optic at 1053 nm 
(la) it is the benign removal of nodular coating defects.’ For SiOz and DKDP at 355 nm (3w) the process is less clear. 
In the case of Si02, conditioning could be as simple as benign removal of trapped residual polishing compounds (i.e. 
laser cleaning), or as complicated as changing the surface structure.’ Similarly, for DKDP conditioning could be the 
reduction in the sue or optical absorption of an absorbing defect, or the reduction in the density of a currently unknown 
type of defect ~tructure.~ Even though the details of the conditioning process in DKDP are unknown, it is still possible 
to take advantage of the effect. 

In principle, conditioning can and will be achieved on-line during beam activation4, but there are many concerns 
associated with it, the major one being its spatial uniformity. This stems from the fluence distribution of the beam for a 
single pulse, as well as the repeatability of the spatial profile on a shot-to-shot basis. In addition, on-line conditioning 
can put many components at risk. We have seen in testing of a prototype final optic assembly (FOA) on LLNL’s 
Beamlet laser that damage on one component caused contamination and damage on  other^.^ A third reason is the cost of 
firing the laser. Although on-line conditioning will occur as part of the initial beamline activation, this type of 
conditioning is undesirable when optics will be replaced as part of normal maintenance, and this will occur in the middle 
of experimental campaigns. Clearly the best scenario for both beamline activation and normal optic replacement cycles 
is to provide the laser with maximally conditioned components from an off-line source. By this we mean that the 
component has been exposed to a laser in such a way as to uniformly decrease its damage defect concentration to a 
minimum (practical) value over the clear aperture. This places some constraints on the types of systems that can be used 
for conditioning, especially when treating approximately 1000 ICF-class optics. The ideal system for conditioning 
would be a single ICF beamline with true top-hat spatial profile and high pulse repetition frequency. But, because of 
issues mentioned above, this is not practical. For similar reasons neither are smaller “large beam” systems like LLNL’s 
Optical Sciences Laser. In addition, the smaller beam requires stitching together of multiple shots to fill the optic’s clear 
aperture. By extending this to its logical conclusion, one arrives at the notion of scanning an optic with a high rep-rate 
source using a small beam. One could then have control of the laser and scan parameters to fill the optic with needed 
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beam fluence and desired uniformity. Such a system can be constructed from commercially available, millijoule class, 
“table-top’’ lasers. 

This idea has been around for several years. To date, both laser glass slabs and turning mirrors have been scanned by 
systems at Io [references 3 and 61 while KDP/DKDP crystals and fused silica components will be scanned at 303. For 
the lo optics, the laser glass slabs are scanned using top-hat beam profiles while the mirrors are scanned using gaussian 
spatial profiles. Until now, 3o-optics have only been scanned using gaussian beams, because top-hat beam delivery 
systems are substantially more complicated. In the following sections we examine the factors involved in gaussian-beam 
based raster-scanning systems at 30. 

2. AVERAGE POWER REQUIREMENTS 

The final optics assembly for the latest generation of ICF class lasers will nominally consist of harmonic generation 
crystals (KDP and DKDP), focus lens, beam separation grating and debris shield (SiOz). Current estimates based on 
initial build rate and subsequent refurbishment of optics place the maximum optical throughput at up to eight FOA units 
per week. It is straightforward to determine the laser power requirements needed to meet this level of throughput, The 
scan time per Conditioning pass is given by 

A AF AF t=-=--- - 
aR ER P 

Here, A is the area to be scanned, a is the beam area, R is the laser repetition rate, E is the pulse energy, F is the beam 
fluence and P is the average laser power. As a baseline we assume uniform coverage by a square top hat beam with 
maximum scan fluence of 14 J/cm2 at 3 ns. The power required to complete 1600 cm2 in 8 hours is 0.78 Watts. For a 
IO-pass conditioning protocol (4-14 J/cm2) the power requirement is 7.8 Watts. Considering optical losses of 50% and a 
30% safety factor the required power is 20 Watts. To achieve the desired 8 FOA/week would require 120W of laser 
power provided a square top hat profile at 3 ns is available. 

3. THE EFFECT OF BEAM SHAPE ON SCAN TIME 

The four beam shapes that are being considered for raster scanning are square top hat (STH), round top hat (RTH), round 
gaussian (RG) and rectangular gaussian (gaussian short axis, top hat long axis, ID). In scanning applications where the 
leading edge of the beam is not needed for conditioning7, the square top hat is clearly the optimum choice since it offers 
uniform coverage with no overlap of successive pulses. The round top hat is next, but requires small overlap for uniform 
coverage. The two gaussian beams are less desirable because a significant portion of the beam energy is below the peak 
fluence, effectively lowering the usable area of the beam. However, because gaussian beams are more readily produced 
by tabletop lasers they merit consideration and are the central focus of this paper. We look at each case below. 

Figure 1. Geometry for hexagonal packed round top hat beams. The cell formed by horizontal and vertical steps x and y is 21% 
smaller than for the beam itself, increasing scan time by 2 1 %. 



3.1 Scan time for round top hat 
Figure 1 shows the geometry of hexagonal packing of round top hat beams for uniform coverage. In order to achieve this 
packing the horizontal step size must be 1.73*r or 0.866*d where d is the beam diameter. The vertical step size is 
0.75*d. The area of this cell is 21% smaller than for the round top hat so the scan will take 21% longer. 

3.2 Scan time for gaussian beams 
In raster scanning the goal is to uniformly irradiate a large region with a small laser beam. Typically the sample is 
moved at constant speed in one direction. At the end of the scan line, the sample is shifted orthogonal to the scan 
direction and the scan direction is reversed. The scan speed depends on the beam size ($, laser repetition rate (R) and the 
fill factor (N = number of shots per beam diameter) and can be calculated according to v=$R/N. The total scan time can 
be calculated according to T=A/(vA) where A is the total scan area and A is the shift between scan lines. When using 
beams with gaussian components (see Figure 2) it is apparent that the scan region cannot be uniformly irradiated and 
there will be fluence “ripple” that depends on the fill factor. 

Rectangular 
gaussian 

I = FWHM, long axis 
$ = l/e2 diameter, 

short axis 

Round gaussian 

I$ = l/e2 diameter 

Figure 2. Beams with gaussian components. The left plot shows a rectangular gaussian with short axis width (l/e2) of I$ and long axis 
width (FWHM) of 1. The right plot shows a round gaussian beam of width $ 

Figure 3 shows a 1-dimensional view of the overlap of gaussian laser beams. 

d = w  
2 rhotslslte 

A A A 

Scan dikedon - 
Figure 3. Gaussian spatial profile with width $ and d corresponding to F~=,(r)=0.61F,k. This corresponds to a fill factor of 2 
shotslsite. 

Using the F(r) =F,kexp[-S(?/#)] and N=@d, we find the relation between the beam ripple and fill factor. 
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Here 6 is the ]/e2 beam diameter and d represents the diameter at fluence F. We callfthe beam overlap. For the one- 
dimensional case the ripple factor is simply llf but for two-dimensional round gaussians it depends on whether the 
packing geometry is square or hexagonal. From geometric considerations it can be shown that the lowest fluence in the 
scan region occurs at the center of a scan "cell". We call this ratio of this fluence to Fpk the minimumJillJi.action (MFF). 
The square and hexagonal packing geometries are shown in Figure 4. 

Cubic packing Hexagonal packing 
Figure 4. Square and hexagonal packing for shots in raster scanning. The low fluence point in the scan occurs at the geometric center 
of the cell. The point corresponding to the scan overlap,f; is also indicated in the figures. 

The MFF values for these packing geometries are given in term of the fill factor N by 

The total scan time equation becomes Ts,,=AN2/R$2 for square packing, while for hex packing it is Thex= 
2AN2/30.5R$2. Thus for the same N, the hexagonal scan time is 15.5% longer (since the vertical shift D is 15.5% 
smaller.) Conversely, for the same values of MFF we have Thex/TcUbic = 4/ 3& indicating that the hexagonal packing 
takes only 77% of the square packing time. Inversion of equations (3) and insertion into the scan time equation 
T=A/(vA) allows the scan time to be written in terms of the MFF. 

Rewriting these equations in terms of laser power and peak fluence (equation 1) allows scan times to be compared for 
equivalent MFF values. The scan times for these beams depends on the MFF and are longer than for the square top hat 
(STH). This is shown in Figure 5. 
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Figure 5 .  Relative scan times as a function of MFF for round gaussian beams with square and hexagonal packing and rectangular 
(1D) gaussian beams based on equations (5). For equivalent average power and fluence the rectangular gaussian beam gives the 
lowest scan times for any MFF and becomes substantially faster at MMF values above 0.8. 

3.3 Effectiveness of packing geometry for round gaussian beams 
From the standpoint of using the MFF as a figure of merit, it may appear that the hexagonal packing scheme is more 
desirable, but this is not necessarily true. In addition to the MFF, we need to know what fraction of the scanned area 
(A&A) has been exposed to what fraction of the peak fluence (F/Fpk). This fractional area can be determined on a 
geometrical basis by calculating the area of the circle of radius corresponding to the (arbitrary) gaussian fluence F, 
relative to the area of the square (square case) or hexagonal unit cell, see Figure 6. Such a plot is shown in Figure 7. For 
completeness, the formulas are given by 

0 1  E < 1 / 2  

= 9, + 4 E  - 2 E  cos-'pi@F)], 
2 
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1 / 2 5  E 5 1  
and 

2iz 
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4 
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where E = In(FPk/F)/ln(l/MFF). 
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Figure 6. Aefp/A is determined by calculating the area of the circle of radius r(F) relative to the area of the unit cell of dimension d for 
the square structure, and dld3 for the hexagonal structure. A,$A = 1 when r = dd2l2 in the square case, and when r = &d3 in the 
hexagonal case. 

A plot of these functions is shown in Figure 7. 
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Figure 7. A plot of the fraction of scanned area (A,$A) as a function of fractional peak fluence (Fpk/F). This plot indicates how much 
area of the sample has been exposed to a fluence of F/Fpk or greater. The square lattice covers more effectively than the hexagonal 
and therefore takes longer to scan. 

4. MULTIPLE PASS SCANNING 

The previous analysis and results assume the sample is scanned using a single pass with a certain overlap. This section 
addresses the question of whether it is beneficial to use multiple passes with a smaller overlap per pass. Possible 
advantages include (1) reduced scan time and (2) reduced surface damage due to dragging (see below). The disadvantage 
of using a smaller overlap, however, is that more scanning fluences may be needed in order to condition properly since 
the leading edge of the gaussian is being used less effectively. But, for this analysis we can use the results and 
terminology from the previous section with the addition of a single new variable p for the number of passes: 

p = number of passes (or pass number). 



Thus we still use: 

4) = l/e2 beam diameter 
A = scanned area 
R = laser repetition rate 
D 

N 
MFF 

= distance between adjacent peaks in the scan direction 
= fraction of the peak fluence where two adjacent beams overlap in the scan direction 
= number of shots per beam diameter in the scan direction 
= Minimum Fill Fraction: all of the scanned area is exposed to this fraction of the peak fluence or 

f 

higher. 

To achieve uniform coverage of a sample with either a square or hexagonal pattern, an arbitrary number of passes cannot 
be applied. It is impossible, for example, to achieve uniform square packing with three passes. To achieve square 
coverage the number of passes required is: 

p = 2”, n = 0,1,2,3 ,... (square) (8) 

while for hexagonal coverage it is: 

p = 3”, n = 0,1,2,3,... (hexagonal) (9) 

Figure 8 shows graphically how the square geometry is produced with an increasing number of passes. Note that each 
additional pass targets areas of minimum fluence coverage (corresponding to the MFF of the previous pass), and that the 
unit cell dimensions decrease as dldp. 

I~ Dass znd pass 4m Dass 8‘n Dass 

Figure 8. Simulation of Gaussian laser beams in a square pattern after 1,2,4, and 8 passes. Each additional pass is an application of 
the 1’ pass, but shifted with respect to it. The crosses mark the spots where the next image targeted its first beam spot, corresponding 
to areas of lightest color, i.e. where F/F,I, = MFF. The diamond in the first image locates a spot where F/FPk =f: 

An important piece of information when considering multiple passes is the scan overlap (#) that is required to achieve a 
desired MFF for a given number of passes. For square coverage, the answer is: 

f = (MFF)p’2 p= 1,2,4,8,. . . (square) (10) 

while for hexagonal coverage it is: 

f = (MFF)3p’4 p=1,3,9,27 ,... (hexagonal) (1 1) 



With this we can calculate the total scan time required to scan p passes at scan overlap f to accomplish a given MFF. 
The total scan time will be the time for one pass multiplied by the number of passes. The single pass scan time is given 
by TI = (AN2)/(R+*), where N is given by equation (2). For the square case we can use Eqn. (5) to write 

(square) (12) A 2 P  A 4 -- - A 2 P  - A N2 
‘P =-- -- R $2 ln(l/f) R 4‘ ln(l/MFFP’2) R 42 ln(l/MFF) Ttot = $ 2  

and equation (4) is recovered. This analysis can be repeated for the hexagonal case. Since T,, is independent of p, we 
see that no matter how many passes are taken to achieve a given MFF, the total scan time will be the same for a given 
packing scheme. Thus factors other than scan time will be more influential in determining how many passes to use to 
scan an optic, such as scan speed and damage dragging. This is when a surface damage event propagates with 
successive pulses and is drug along with the beam. Experimentally, it has been observed for DKDP that a scan overlap 
off = 0.5 is sufficient to avoid dragging, while f = 0.9 is not, indicating that a larger number of passes (and therefore a 
lower overlap) is desirable. However, the number of passes in a scan will be limited by how fast the stages can move 
accurately. 

5. THE EFFECT OF POINTING STABILITY AND FLUENCE FLUCTUATIONS 

The two prime factors affecting the ability to cover the scan region uniformly are beam-pointing instability and fluence 
fluctuations. Both of these effects reduce the value of the minimum fill fraction and lead to more “holes” in the scanned 
region. The gaussian-beam scanning systems used at LLNL can have worst-case beam-pointing instabilities up to h300 
pm and fluence fluctuations up to *15%. We performed a Monte Carlo analysis to examine the effect of these 
instabilities on the minimum fill fraction. In the analysis we assumed a normal distribution for both error sources and 
analyzed 1000 different cell configurations, taking into account cell members and their nearest neighbors, to determine 
the lowest value of minimum fill fraction. The results of the modeling are given in Table 1 for both square and hex 
packing patterns and common fill factors of 2 and 4.36 shotshite. Figure 9 shows the effect of beam wander for beam 
wander and fluence fluctuations up to *300 pm and *IS% for a square cell with N=4.36. 

-d- 

N-4.36 
BW=O pm, 
AF=O% 
MFF-0.81 

N-4.36 
BW=200 pm, 
A!==lO% 
MFF=0.78 
MaxF-1.10 

N=4.36 
EW=100  pm, 
AF=5% 
MFF10.80 
MaxF=I .04 

N14.36 
BW=300 pm, 

MFF=0.89 
MaxF=1.22 

AF-I 5% 

Figure 9. The effect of pointing stability and fluence variations to 300 Frn and *I 5% on a cell with N=4.36. The color scale of all 
images covers fluence values of 0.75 to 1.25. 



The upper left image shows ideally square packed beams for N=4.36 and no beam variations. The beams still occupy 
the comers of the cell when beam wander is 100 pm and fluence fluctuations are f 10%. The four-cornered cell 
structure is essentially gone when beam wander and fluence variations are greater than 200 pm and *lo%. 

Inspection of the table reveals that beam wander and fluence instabilities quickly erase any advantage for the hexagonal 
packing pattern in minimum fill fluence. The table also shows that the fluence holes for the 2 shotdsite case are much 
deeper than for 4.36 shotshite. From LLNL’s Phoenix 3 ns Nd:YAG system scan parameters at 12 J/cm2 [5], one can 
expect 117 deep holes of 0.34 J/cm2 in a NIF optic for the square case and 135 for the hex packing pattern when the fill 
factor is 2 shotshite. For fill factor of 4.36, there will be 573 shallow holes (square case) and 663 holes (hex) of 5-6 
J/cm2. Practically speaking, with the damagelscanning systems currently available, the experimenter can save some 
setup time by avoiding hexagonal scans and doing multipass square scans instead. 

Table 1 .  The effect of beam wander and fluence fluctuations on the minimum fi l l  fraction. 

We also used the simulation to explore the effect of packing density on the distribution of MFF values for the worst-case 
scenario of 300 pm beam wander and *15% fluence fluctuation. Figure 10 shows how the cumulative probability 
distribution for MFF varies as a function of N and$ 

The effect of fluence and beam wander can be seen by considering the curve for N=2, F0.61. Without fluence and 
wander variations, the expected square-MFF for this is 0.368. The curve indicates that 71.6% of the cells will have 
lower MFF values than ideal while the remaining 28.4% will have MFF above ideal. In addition, 10% of the sites will 
have MFF values lower than 0.15, so this will yield a scan with many holes. Increasing to N=4.36, p0.9, the ideal 
square-MFF is 0.81. The cumulative probability for this value is 69.8% but 10% of the sites will have MFF values lower 
than 0.66. This curve also shows that 30.2% for the sites exceed the ideal MFF value. This is due to the combined 
contributions of complete beam overlap and higher than average fluences. This trend continues as N is increased. 
Curiously, the same probability distribution appears for N=6.24, F0.95 and N=8, p0.97 where the ideal square-MFF 
values are 0.90 and 0.94, respectively. These values correspond to cumulative probabilities of 53.9% and 72.3%. The 
10% probability for this distribution corresponds to an MFF of 0.805. The remaining two curves indicate that N=10 will 
yield MFF=0.9 for 98.1% of the cells, but there is significant probability for MFF values greater than 1. This is 



Distributions of MFF for 300 pm beam wander and *15% fluence fluctuations 
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Figure 10. Cumulative probability distributions for MFF with beam fluence and beam wander variations of *15% and 300 pm 
respectively. The black dots indicate the ideal MFF for the fill factor. 

significant because these values are due mainly to fluence fluctuations and there is a danger that the sample could 
experience damage. In addition, there is a large time penalty associated with these laser variations. A NLF scan with the 
ideal MFFideal=O.9 (N=6.24, p0.95) using the 3 ns Phoenix laser would require 6.55 hours. It requires 102/6.242=2.6 
times as long (or 17.6 hours) to scan at N=10 to achieve the desired MFF=0.9, and over 50% of the sites would be 
scanned at higher than ideal MFF. Of course, this represents what we view as a worst-scenario for beam wander and 
fluence fluctuations. More refined numerical simulations can be done to model actual laser systems. This will require 
detailed statistical studies of beam wander and fluence fluctuations, not only to determine the magnitudes of these 
effects, but also the governing probability distributions (which may not be gaussian). 

6. SUMMARY 

We have developed the nomenclature to describe the raster scanning process using gaussian beams in terms of number 
of shotsheam diameter (N) and the minimum fill fraction (MFF) for square and hexagonal packing schemes. The main 
conclusions of the work are that there is an mherent trade-off between degree of fluence uniformity and scan time. If the 
scan system did not possess any fluctuations, the rectangular gaussian beam offers lower scan times compared to the 
square or hexagonal packing schemes for round gaussian beams. For round gaussians the hexagonal packing would be 
23% faster than square for a given MFF value, but with beam wander and shot-to-shot fluence fluctuations typical of our 
scanning systems, this advantage is negated. From a practical standpoint it is easier to execute a multipass square series 
of scans and live with the (shallow) fluence holes created by fluctuations. 

The key factor in determining the number of passes to achieve a desired MFF is whether damage is dragged along with 
the scan. For KDP, we have seen that beam overlap factors of 0.5 do not cause significant dragging while it is more 
prone topO.9. Also central to this question is whether a high fill factor achieves better conditioning due to the higher 
number of shots on the leading edge of the beam. If this were the case, then slow scanning using excimers, with 
appropriately shaped beams, would be preferable. This issue will be addressed by experiments presented in reference 5. 
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